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Equations of motion are derived for an absolutely rigid body attached to a fixed base by a two-degrees- 

of-freedom joint. The behaviour of this system is investigated in the special case when there are no 

applied forces other than the reaction forces in the joint. Possible types of motion that may occur are 

determined, depending on the relations among the components of the inertia tensor of the body and 

the first integrals of the system (the kinetic energy and projection of the angular momentum onto the 

fixed axis of the joint). The qualitative and quantitative characteristics of the motion are found. 

Papers on the dynamics of an absolutely rigid body with a fixed point generally assume that the 
mechanical system in question has three degrees of freedom. This is the situation, in particular, 
when the body is attached to a fixed base by a ball-and-socket joint. In engineering systems, 
however, one often encounters rigid bodies attached to a base by a two-degrees-of-freedom 
joint, consisting of a fixed axis and a movable one, which are usually mutually perpendicular. 
Such systems have two degrees of freedom, but the set of kinematically possible motions is still 
quite rich. In this paper we shall consider the motion of such a system by inertia, i.e. when 
there are no external forces other than the reaction at the joint. The inertial motion of other 
mechanical systems with two degrees of freedom has been studied by various researchers. The 
present paper uses techniques similar to those of [l, 21, which were devoted to the inertial 
motion of a plane articulated linkage of two rigid bodies when the axis of one of the joints is 
fixed in the inertial system of coordinates. 

1. EQUATION OF MOTION 

Consider an absolutely rigid body attached to a fixed base by a two-degrees-of-freedom joint 
with mutually perpendicular axes (Fig. 1). The joint is assumed to be ideal, i.e. the friction in its 
axes is disregarded. The motion will be described in terms of two orthogonal Cartesian 
systems of coordinates: a fixed (inertial) system X,X,X, and a system x,x,x, rigidly attached to 
the rigid body. The poles of both coordinate systems are at the point of intersection 0 of the 
joint axes; the X, and x, axes point along the fixed and moving axes of the joint, respectively. 
All the kinematically possible positions of the body (i.e. of the moving system of coordinates 
x,x,x,) relative to the fixed system of coordinates X,X,X, may be described in terms of two 
angles: the angle a between the X, and x1 axes, and the angle p between the x2 axis and the 
X,X, plane. The angles cx and 0, which will be taken as generalized coordinates, may be 
treated as the angles of two successive 
from its initial position (a = p = 0, the 
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rotations through which one can transfer the rigid body 
moving system of coordinates coincides with the fixed 
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Fig. 1. 

one) to the present position. The first rotation (through the angle a) takes place about the 
axis (the fixed axis of the joint) and is described by the matrix 

cos cx sina 0 

r, = -sina cosa 0 

0 0 1 

The second rotation (through the angle p) takes place about the _Y~ axis (the moving axis of 
the joint) and corresponds to the matrix 

/I 

1 0 0 
l-a= 0 cosp sinp 

0 -sinp co$ 

The transformation matrix from X,X,X, coordinates to x,x,x, 
I- = rara. 

Let wj denote the projection of the angular velocity vector o of 
2, 3) axis. The kinematic equations expressing. the components oi 
coordinates a and p and the velocities (jl and p are 

0, =p, o2 =&sinp, o1 =&cosp 

coordinates is the product 

the body onto the xi (i=l, 
in terms of the generalized 

(1.1) 

Equations (1.1) may be derived, in particular, directly from the matrix r, as follows (see, e.g. 

131) 

01 = M-')j2, wp =M-'I,,, w3 = u-f’),, 

where (I?‘), are the appropriate elements of the matrix l?, the prime denotes transposition 
and the dot denotes differentiation with respect to time. 

The kinetic energy of the motion of a rigid body with a fixed point is 

T=J4(JW4, o=(q902,03) (1.2) 

where J is the inertia tensor of the body relative to the fixed point. Expanding the scalar 
product in (1.2) taking (1.1) into account, we obtain 
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T = X K(p)ix’ + j$ J, 1f12 - b(p)&fi 
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(1.3) 

K(P) = J,, sin2 p + J,, cos* fi - 2 J,, sin p cos p 

b(P) = J,,sinp+Ji3cosP 

where Jii (i = 1, 2, 3) are the axial moments of inertia and J, = Jjl (i f j, i, j = 1, 2, 3) are the 
products of inertia of the body in _x1+x3 coordinates. We shall assume that the inertia ellipsoid 
of the body is non-degenerate and the inertia tensor J is positive definite. 

The Lagrange equations corresponding to (1.3) are 

K(P)ti-b(P)B+[(J22 -Js3)sin2P-25 23cos2~]~~-(J,2cos~-J,3sin~)~2 =a 
(1.4) 

-b(P)ti+J,,S-J$[(J22 -J33)sin2j3-2J23cos2P]dr2 =Q+ 

where Q, and Qs are the generalized forces corresponding to the generalized coordinates a 
and /3, respectively. In physical terms, Q, and Qa are the torques about the X, and x1 axes, 
respectively, of the active forces applied to the rigid body. 

2. INERTIAL MOTION (Q,=a,=O) 

In this case the system of equations (1.4) has two first integrals: the kinetic energy T (1.3) 
and the quantity 

L = aT / ad? = K(P)& - l@>p (2.1) 

This fact may be deduced from general theorems of mechanics, without appealing to the 
Lagrange equations. Conservation of kinetic energy follows from the fact that the mechanical 
system in question is holonomic and scleronomous, while the generalized forces acting on it 
are zero. Conservation of the quantity L (2.1) is a consequence of the fact that the generalized 
coordinate a is cyclic. The number L is the projection of the angular momentum Jw of the 
system onto the fixed axis X,. 

Solving (3.1) for Cx. and substituting the resulting expression into (2.3), we have 

a(p)fi* / 2 + l-I@, L) = T 

a(~)=[(J,,J22-J~2)sin2~+(J,1J33-J~3)cos2~- 

-2(J1,J23 + J,2J,3)sinPcosPl/ K(P), lTb,L) = L2 lW(P)) 
a>O, K>O 

(2.2) 

The inequalities a>O, K > 0 follow from the fact that the inertia tensor of the body is 
positive definite. 

Indeed, a direct check shows that the expressions for a and K may be written as scalar products 

a=(Ju,u), K=(Jv,v) 

u = 1(1,@binp 1 K(P), b(kbcosP 1 K(P>ll. v = )lO,sinfkcospll 

which are positive because the inertia tensor Jis positive definite. That a and K are positive may also be 
deduced from the fact that Fl= L2 l(2K) is the kinetic energy of the body when 6 = 0, and LZP” /2 is the 
kinetic energy when L = 0. Since the kinetic energy of a body with a non-degenerate inertia ellipsoid is 
positive for w # 0, it is clear that CI > 0 and K > 0. 

Equation (2.2) describes the variation of the angle p and reduces to a quadrature 
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(2.3) 

where PO = p(fo) and t, is a .suitably chosen initial time. The sign on the right-hand side of 
(2.3) is the same as that of p if p f 0 or with the sign of the expression Xl/@ if p = 0. Note 
that the integral on the left-hand side of (2.3) may be expressed in terms of elementary and 
elliptic functions. 

From a geometrical standpoint Eq. (2.2) describes the projection of the phase trajectory of 
system (1.4) for Q, = es = 0 onto the phase plane p, p for the generalized coordinate p. It 
follows from (2.2) that the motion as a function of the angular variable p is analogous to the 
motion of a conservative mechanical system with one degree of freedom, with kinetic energy 
a(p)fi” / 2 and potential energy lI( p, L). The constant T is then an analogue of the total mechan- 
ical energy of a system with one degree of freedom. Qualitatively, therefore, motion as a 
function of p may be investigated by phase-plane methods, as when constructing phase 
trajectories for a one-degree-of-freedom conservative system. 

We shall first consider the reduced potential energy l-I@, L) as a function of h in the interval 
0 s PS 27~. Transforming to the doubled argument 2p expression (2.2) for n reduces to the 
form 

l-l@, L) = L* I(20 2K = J,, + J,, + Rcos(2P + v) (2.4) 

cos~=(J,,--J,,)/R, sinv=2J23/R 

R = [(J,, - J,, >* -, 4 J223 1% 

Let us assume that the equalities J,, = Jz2, J,, = 0 do not hold simultaneously. It follows from 
(2.4) that the function ll(j3, L), L # 0, has four extremum points in the range 0 s p s 27r, say 
p = pi (i = 1, 2,3,4) and these are precisely the extremum points of the function cos(2p + v) 

~i-=(-arccos[(J,,-J22)/R]+xi)/2, J23>0 

pi =(arccos[(J33 - J,,)l R]+n(i-1))/2, J,, ~0 

pi =x(i-1)/2, J2, =O; i=l,2,3,4 

(2.5) 

If J,, > 0 (J,, < 0), then I@, L) reaches a maximum (minimum) at h, and p3 and a minimum 
(maximum) at p2 and p4. If J,, = 0 and J2? > J,, (J,J,,), then pi and & are maximum (mini- 
mum) points, while h2 and pJ are minimum (maximum) points of II@, L). At these extremum 
points 

l-I@;, L) = L2( J,, + J,, ? R)-’ (2.6) 

where R has the minus sign for a maximum and the plus sign for a minimum. The function 
l-I@, L) takes the same value at all maximum (minimum) points; we shall denote this value 
henceforth by ll,, (lIti). 

It follows from (2.2) that T--II@, L) 2 0 and so, in view of (2.6) the first integrals T and L 
satisfy the relationship T 2 II,,(L2). 

Figure 2 illustrates the construction of phase trajectories in the h, fi plane and plots a few 
phase curves for different relations between T and L’. Curve 1 corresponds to T > l-I,,,,,, curve 
2 to T = l-I,,, and curve 3 to I$,,,,, < T < II,,,,. 

If Q,,,, < T < II,,, the motion of the body as a function of j3 consists of periodic oscillations 
about the points pi (see (2.5)) where the reduced potential energy ll( /3, L) has a minimum. The 
period z, of the oscillations equals double the value of the integral on the left-hand side of 
(2.3), if one puts h,, = p_, h = h+, where p_ and b+ are two consecutive values of the angle p at 
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Fig. 2. 

which the angular velocity fi vanishes and between which there is a minimum point of II@, L) 

(2.7) 

The values of p_ and j3, are found from the equation II@, L)-T =O, where II@, L) is 
determined from (2.4). Solving this equation we obtain 

(2.8) 

whence it follows that the amplitude of the oscillations is A. 
If T >l-I,,, then l3 varies monotonically, that is, the body rotates about the fixed x1 axis. This 

rotation is periodic with period 

K 

dp (2.9) 

If T =l-I,,, the representative point of the system describes a separatrix, but if T = II_ the 
phase trajectories shrink to a point (l3 = pi, fi = 0), i.e. the body moves at a fixed angle j3 = pi, at 
which the function II@, L) has a minimum. When T = ll,, the motion may again correspond 
to a fixed value of p = fi, at which Il(j3, L) has a maximum. As follows from (2.1) if l3 = pi = 
const, the angle cx will vary at a constant rate 

ci=211/L=2TJL=2L(J,,+J3,?R)-’ (2.10) 

This means that the body will rotate uniformly at angular velocity (2.10) about the fixed X, 
axis, while the moving x2 axis will make an angle l3 with the X,X, plane. It follows from 
Routh’s theory (see also Fig. 2) that if the potential energy at pi is II@,, L) = rImin, the motion 
is stable with respect to h and l3. but if ll@,, L) = llmax, the motion in unstable. 
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Note that the quantity K = K(P) defined in (1.3) and occurring in formulae (2.2) and (2.4) for 
the function l-I@, L) is the moment of inertia of the rigid body about the fixed X, axis, if the 
moving x, axis makes an angle l3 with the X,X, coordinate plane. Indeed, the moment of 
inertia 1, of the body about an arbitrary axis (with unit vector e) passing through the point 0 
may be expressed in terms of the inertia tensor J as 

le = (Je, e) (2.11) 

To calculate 1, one must express the inertia tensor J and unit vector e in terms of the same 
system of coordinates. In our case e is a unit vector along the X, axis, which has the following 
components in the moving frame .x,x,x, 

e = (0, sir@, co@) (2.12) 

Substituting (2.12) into (2.11), we obtain 1, = K@). Accordingly, minimizing (maximizing) the 
function II@, L) in (2.2) is equivalent to maximizing (minimizing) the moment of inertia of the 
body relative to the X, axis. 

It follows from the foregoing that, when there are no active forces, a rigid body attached to a 
base by a two-degrees-of-freedom joint may rotate uniformly about a fixed (X,) axis only if its 
moment of inertia about the axis is either a maximum or a minimum. In the case of a 
maximum moment of inertia the motion is stable; for a minimum, it is unstable. 

Remark. We have assumed that the equalities J, = J,,, JL3 =0 do not hold simultaneously. If they do, 
the expressions for a(P), II@, L) and K(p) in (2.2) become much simpler 

a(B)=[J*,J22-b2(P)lIJ22, ncp,t1= L2 1(2J22)* &PI = J,, 

The functions II( p, L) and K(p) are constants, independent of l3. We recall that K(p) is the moment of 

inertia of the body about the fixed X, axis; the fact that this quantity is constant implies that the moment 
of inertia remains unchanged in all possible configurations of the system. In the special case considered, 
there are only two qualitatively distinct types of motion. If T-II = T - Lz /(2J,,) > 0, the body performs 

periodic rotations with respect to p with the period defined by (2.9). If 3 4?/(2J,)= 0 any constant 
values of p (and only constant values) satisfy the differential equation (2.2). In that case the body rotates 
uniformly about the X, axis at angular velocity cl = Ll Jt2. Unlike the general case, rotation is possible for 
any inclination of the moving x2 axis to the X,X, plane. Oscillatory motion as a function of p is 
impossible when Jz2 = J,,, Jz3 = 0. 

We will now investigate the motion as a function of ~1. solving Eq. (2.1) for &, we obtain 

c? = L / K(P) + i@>p / K(P) (2.13) 

where K(P) is determined from (1.3) or (2.4). We note here that K(p) is a x-periodic function. 
In principle, one could find the angle a from Eq. (2.13) as an explicit function of time by 

using (2.3). Namely, one uses (2.3) to express l3 as a function of time, inserts p(t) into (2.13) and 
integrates both sides of (2.13) with respect to time from I, (the initial instant of time) to i {the 
present instant of time). Generally speaking, however, this can be done only by numerical 
means, as the integrals-involved in particular, the integral (2.3)-cannot be expressed in 
terms of functions that can be investigated by analytical techniques, We will therefore confine 
ourselves to a qualitative study of the motion as a function of a. 

We will first consider the case when T>IITmBxf when the system performs periodic rotations 
as a function of l3, with period T, (see (2.9)). We first prove the following lemma. 

Lemma. Let f(x) be an integral n-periodic function. Then for any x 
x+2x x+2x 

I f(Wn 64 = 0, JfG,;)cosgm, = 0 (2.14) x x 
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We shall prove the first of these equalities; the proof of the other is analogous. Express the integral (2.14) 
as a sum, bisecting the range of integration at the point x+rr. In the interval [x+n, x+ 27~1 we use the 
change of variables 5 = n+ TI and use the properties of the functions f( rl) and sin q to obtain 

x+2x 

J, fWsin5&= -‘jj(QsinM 
x 

which implies the first equality of (2.14). 

Integrate Eq. (2.13) with respect to t from t, to t, + FZ~,, where 2, is the period of rotation 
with respect to p and y1 an arbitrary natural number. Using the equalities (see (2.3)) 

fidr=d& dr=*(a(P)/[2(T-n(p,L,,]}ndp (2.15) 

we obtain, after reduction 

a(t,+nz,)-a(t0)=n[Ln(T,L)fB] (2.16) 

CI(T,L)=TF(T,L$)d& B=2j*dp 
0 o K(P) 

F(T,L$)=I K(P)J,, -b2(P) M 

f49 2WUT - L2 1 
The double sign (k) in (2.15) and (2.16) reflects the fact that the sense of the body’s rotation 

about the moving axis x, may vary. The positive sense (counterclockwise as observed from the 
end of the unit vector of the x1 axis) is indicated by the plus sign and the negative sense by the 
minus sign. 

It follows from the lemma proved above that B= 0. Hence, if L ~0, then when T > II,, 
(rotation with respect to /3) each revolution of the body about the X, axis changes the angle a 
by a systematic increment equal in absolute value to I L I R(T, L). The direction of the incre- 
ment depends on the sign of the constant L. Thus, the magnitude of the angle a may become 
arbitrarily large as time passes. It should be noted that, generally speaking, the variation of 
a(t) is not monotonic. 

If natural numbers m and IZ exist such that 

nlLIR=2IVn (2.17) 

then the motion of the body as a whole is periodic (in the sense that the body will return to its 
initial state although the angles a and p are defined only up to multiples of 27~) and the least 
period is z = IX,, where IZ is the least natural number n satisfying (2.17). In other words, the 
motion of the system will be periodic if the number u = IL I Q(T, L)l(27c) is rational, in which 
case the minimum period will be r=nz,, where y1 is the least natural denominator of the 
fraction p. If p is irrational, the motion is non-periodic. 

In the special case L = 0 the motion with respect to a is periodic with least period z = z,, 
and, unlike the general case L #to, it is bounded (the coordinate a cannot take arbitrarily large 
values). In that case one can state that when T = n,,, the motion with respect to a is rotational 
(though not in general monotonic) if L # 0 and oscillatory if L = 0. 

Let us now consider the case in which ll,, CT < rImax and the system performs oscillations 
with respect to p with period 2, and amplitude A (see (2.7) and (2.8)). Integrating Eq. (2.13) 
with respect to time from t, to r, + IX,,, where IZ is a natural number, we obtain 

a(fO.tn~,)-a(fo)=LR,(L,T)n, i2,(L,T)=2~F(T,L,P)dfi (2.18) 
P- 
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where p_ and /3+ are the minimum and maximum of the oscillating angle p, defined by (2.8). 
Note that the integral with respect to t of the second term on the right-hand side of (2.13), from 
t, to t, +rzz, vanishes, since after replacing the variable of integration in accordance with (2.15) 
the integral, considered over each oscillation period separately, reduces to the sum of two 
integrals of the function b(P)IK(P), one of which is evaluated from p_ to p+ and the other from 
p+ tc, p_. Equation (2.18) is the analogue of (2.16) in the case of oscillations with respect to p. 

Analysing Eq. (2.18), as done previously for (2.16), we reach the following conclusions. 
Since oscillations with respect to p are only possible when L #O, it follows that a may take 
arbitrarily large values. If the quotient v = I LR, I /(27c) is a rational number, the body as a whole 
will move periodically, the least period being 2 = ITT,, where n is the least natural denominator 
of the fraction v. If v is irrational the motion is non-periodic. 

Finally, we shall establish simple sufficient conditions for the rotation with respect to a to be 
monotonic, i.e. sufficient conditions for the generalized velocity d! to have a fixed sign. Since 
K(P) > 0, we deduce from (2.13) that & does not change sign if I L I A b@)p I or, equivalently 

LZ > b2(p>p2 (2.19) 

Solving (2.2) for 6’ and substituting the result into (2.19), we obtain 

L2J,, > 27%2(p) (2.20) 

which is equivalent to (2.19). Since b’(p) = (.I,, sinp + J,, cosp)’ G .I:, + Jf3, it follows that 
inequality (2.20) will certainly hold if 

L2J,, > 2T(J;, + Jf3) (2.21) 

Hence inequality (2.21) is a sufficient condition for rotation with respect to a to be mono- 
tonic. 

The work reported here was carried out with financial support from the Russian Fund for 
Fundamental Research (93-013-16262). 
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